Documentation

EllipticCurve.ProjectiveSpace.TensorProduct.SymmetricMap

Symmetric Multilinear Maps #

In this file we define symmetric multilinear maps bewteen modules as a module itself.

Main definitions #

structure SymmetricMap (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') extends MultilinearMap R (fun (x : ι) => M) N :
Type (max (max u' v) w)

An symmetric map from ι → M to N, denoted M [Σ^ι]→ₗ[R] N, is a multilinear map that stays the same when its arguments are permuted.

Instances For

    An symmetric map from ι → M to N, denoted M [Σ^ι]→ₗ[R] N, is a multilinear map that stays the same when its arguments are permuted.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      instance SymmetricMap.instFunLikeForall {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
      FunLike (M [Σ^ι]→ₗ[R] N) (ιM) N
      Equations
      @[simp]
      theorem SymmetricMap.map_update_add {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) [DecidableEq ι] (g : ιM) (c : ι) (x y : M) :
      f (Function.update g c (x + y)) = f (Function.update g c x) + f (Function.update g c y)
      @[simp]
      theorem SymmetricMap.map_update_smul {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) [DecidableEq ι] (g : ιM) (c : ι) (r : R) (x : M) :
      f (Function.update g c (r x)) = r f (Function.update g c x)
      theorem SymmetricMap.map_coord_zero {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) {g : ιM} (c : ι) (h : g c = 0) :
      f g = 0
      @[simp]
      theorem SymmetricMap.map_update_zero {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) [DecidableEq ι] (g : ιM) (c : ι) :
      f (Function.update g c 0) = 0
      @[simp]
      theorem SymmetricMap.map_zero {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) [Nonempty ι] :
      f 0 = 0
      theorem SymmetricMap.congrFun {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {f g : M [Σ^ι]→ₗ[R] N} (h : f = g) (x : ιM) :
      f x = g x
      theorem SymmetricMap.congrArg {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) {x y : ιM} (h : x = y) :
      f x = f y
      theorem SymmetricMap.coe_inj {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {f g : M [Σ^ι]→ₗ[R] N} :
      f = g f = g
      theorem SymmetricMap.ext {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {f g : M [Σ^ι]→ₗ[R] N} (h : ∀ (x : ιM), f x = g x) :
      f = g
      theorem SymmetricMap.ext_iff {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {f g : M [Σ^ι]→ₗ[R] N} :
      f = g ∀ (x : ιM), f x = g x
      instance SymmetricMap.instCoeMultilinearMap {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
      Coe (M [Σ^ι]→ₗ[R] N) (MultilinearMap R (fun (x : ι) => M) N)
      Equations
      @[simp]
      theorem SymmetricMap.coe_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) :
      f = f
      @[simp]
      theorem SymmetricMap.coe_mk {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : MultilinearMap R (fun (x : ι) => M) N) (h : ∀ (v : ιM) (e : Equiv.Perm ι), (f.toFun fun (i : ι) => v (e i)) = f.toFun v) :
      { toMultilinearMap := f, map_perm_apply' := h } = f
      @[simp]
      theorem SymmetricMap.map_perm_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) (e : Equiv.Perm ι) (x : ιM) :
      (f fun (i : ι) => x (e i)) = f x
      @[simp]
      theorem SymmetricMap.comp_domDomCongr {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) (e : Equiv.Perm ι) :
      def SymmetricMap.mk' {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : MultilinearMap R (fun (x : ι) => M) N) (h : ∀ (e : ι ι), MultilinearMap.domDomCongr e f = f) :
      Equations
      Instances For
        instance SymmetricMap.instAdd {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
        Equations
        @[simp]
        theorem SymmetricMap.add_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f g : M [Σ^ι]→ₗ[R] N) :
        ⇑(f + g) = f + g
        theorem SymmetricMap.coe_add {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f g : M [Σ^ι]→ₗ[R] N) :
        ↑(f + g) = f + g
        instance SymmetricMap.instZero {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
        Equations
        @[simp]
        theorem SymmetricMap.zero_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
        0 = 0
        theorem SymmetricMap.coe_zero {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
        0 = 0
        @[simp]
        theorem SymmetricMap.mk_zero {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (h : ∀ (v : ιM) (e : Equiv.Perm ι), (MultilinearMap.toFun 0 fun (i : ι) => v (e i)) = MultilinearMap.toFun 0 v) :
        { toMultilinearMap := 0, map_perm_apply' := h } = 0
        instance SymmetricMap.instSMul {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N] :
        SMul S (M [Σ^ι]→ₗ[R] N)
        Equations
        @[simp]
        theorem SymmetricMap.smul_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) {S : Type u_1} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N] (c : S) :
        ⇑(c f) = c f
        theorem SymmetricMap.coe_smul {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) {S : Type u_1} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N] (c : S) :
        ↑(c f) = c f
        theorem SymmetricMap.coeFn_smul {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N] (c : S) (f : M [Σ^ι]→ₗ[R] N) :
        ⇑(c f) = c f
        instance SymmetricMap.instSMulCommClass {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N] {T : Type u_2} [Monoid T] [DistribMulAction T N] [SMulCommClass R T N] [SMulCommClass S T N] :
        instance SymmetricMap.instAddCommMonoid {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} :
        Equations
        • One or more equations did not get rendered due to their size.
        instance SymmetricMap.instDistribMulAction {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N] :
        Equations
        instance SymmetricMap.instModule {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Semiring S] [Module S N] [SMulCommClass R S N] :

        The space of multilinear maps over an algebra over R is a module over R, for the pointwise addition and scalar multiplication.

        Equations
        instance SymmetricMap.instNoZeroSMulDivisors {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Semiring S] [Module S N] [SMulCommClass R S N] [NoZeroSMulDivisors S N] :
        def SymmetricMap.toMultilinearMapLM {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Semiring S] [Module S N] [SMulCommClass R S N] :
        M [Σ^ι]→ₗ[R] N →ₗ[S] MultilinearMap R (fun (x : ι) => M) N

        Embedding of symmetric maps into multilinear maps as a linear map.

        Equations
        Instances For
          @[simp]
          theorem SymmetricMap.toMultilinearMapLM_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {S : Type u_1} [Semiring S] [Module S N] [SMulCommClass R S N] (self : M [Σ^ι]→ₗ[R] N) :
          toMultilinearMapLM self = self
          def SymmetricMap.compLinearMap {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N [Σ^ι]→ₗ[R] P) (g : M →ₗ[R] N) :
          Equations
          Instances For
            @[simp]
            theorem SymmetricMap.compLinearMap_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N [Σ^ι]→ₗ[R] P) (g : M →ₗ[R] N) :
            (f.compLinearMap g) = f fun (x : ιM) (i : ι) => g (x i)
            theorem SymmetricMap.compLinearMap_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N [Σ^ι]→ₗ[R] P) (g : M →ₗ[R] N) (x : ιM) :
            (f.compLinearMap g) x = f (g x)
            def SymmetricMap.compLinearMapAddHom {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] (P : Type w') [AddCommMonoid P] [Module R P] (ι : Type u') (f : M →ₗ[R] N) :
            Equations
            Instances For
              @[simp]
              theorem SymmetricMap.compLinearMapAddHom_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : M →ₗ[R] N) :
              (compLinearMapAddHom P ι f) = fun (x : N [Σ^ι]→ₗ[R] P) => x.compLinearMap f
              theorem SymmetricMap.compLinearMapAddHom_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : M →ₗ[R] N) (g : N [Σ^ι]→ₗ[R] P) :
              theorem SymmetricMap.compLinearMap_add {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f₁ f₂ : N [Σ^ι]→ₗ[R] P) (g : M →ₗ[R] N) :
              (f₁ + f₂).compLinearMap g = f₁.compLinearMap g + f₂.compLinearMap g
              def SymmetricMap.compLinearMapₗ {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] (P : Type w') [AddCommMonoid P] [Module R P] (ι : Type u') (S : Type u_1) [Semiring S] [Module S P] [SMulCommClass R S P] (f : M →ₗ[R] N) :
              Equations
              Instances For
                @[simp]
                theorem SymmetricMap.compLinearMapₗ_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (S : Type u_1) [Semiring S] [Module S P] [SMulCommClass R S P] [Module R S] (f : M →ₗ[R] N) :
                (compLinearMapₗ P ι S f) = fun (x : N [Σ^ι]→ₗ[R] P) => x.compLinearMap f
                theorem SymmetricMap.compLinearMapₗ_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (S : Type u_1) [Semiring S] [Module S P] [SMulCommClass R S P] [Module R S] (f : M →ₗ[R] N) (g : N [Σ^ι]→ₗ[R] P) :
                def LinearMap.compSymmetricMap {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N →ₗ[R] P) (g : M [Σ^ι]→ₗ[R] N) :
                Equations
                Instances For
                  @[simp]
                  theorem LinearMap.compSymmetricMap_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N →ₗ[R] P) (g : M [Σ^ι]→ₗ[R] N) :
                  (f.compSymmetricMap g) = f g
                  theorem LinearMap.compSymmetricMap_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N →ₗ[R] P) (g : M [Σ^ι]→ₗ[R] N) (x : ιM) :
                  (f.compSymmetricMap g) x = f (g x)
                  def LinearMap.compSymmetricMapAddHom {R : Type u} [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] (ι : Type u') (f : N →ₗ[R] P) :
                  Equations
                  Instances For
                    @[simp]
                    theorem LinearMap.compSymmetricMapAddHom_coe {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (f : N →ₗ[R] P) :
                    def LinearMap.compSymmetricMapₗ {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {P : Type w'} [AddCommMonoid P] [Module R P] {ι : Type u'} (S : Type u_1) [Semiring S] [Module S N] [SMulCommClass R S N] [Module S P] [SMulCommClass R S P] [CompatibleSMul N P S R] (f : N →ₗ[R] P) :
                    Equations
                    Instances For
                      def SymmetricMap.ofIsEmpty (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') [IsEmpty ι] :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem SymmetricMap.ofIsEmpty_symm_apply_apply (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') [IsEmpty ι] (n : N) (x✝ : ιM) :
                        ((ofIsEmpty R M N ι).symm n) x✝ = n
                        @[simp]
                        theorem SymmetricMap.ofIsEmpty_apply (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') [IsEmpty ι] (f : M [Σ^ι]→ₗ[R] N) :
                        (ofIsEmpty R M N ι) f = f fun (a : ι) => isEmptyElim a
                        def SymmetricMap.ofSubsingleton (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] {ι : Type u'} [Subsingleton ι] (i : ι) :
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem SymmetricMap.ofSubsingleton_apply_apply (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] {ι : Type u'} [Subsingleton ι] (i : ι) (f : M [Σ^ι]→ₗ[R] N) (m : M) :
                          ((ofSubsingleton R M N i) f) m = f (Function.const ι m)
                          @[simp]
                          theorem SymmetricMap.ofSubsingleton_symm_apply_apply (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] {ι : Type u'} [Subsingleton ι] (i : ι) (f : M →ₗ[R] N) (x : ιM) :
                          ((ofSubsingleton R M N i).symm f) x = f (x i)
                          def SymmetricMap.isUnique (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') [Unique ι] :
                          Equations
                          Instances For
                            @[simp]
                            theorem SymmetricMap.isUnique_apply_apply (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') [Unique ι] (f : M [Σ^ι]→ₗ[R] N) (m : M) :
                            ((isUnique R M N ι) f) m = f (Function.const ι m)
                            @[simp]
                            theorem SymmetricMap.isUnique_symm_apply_apply (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] (ι : Type u') [Unique ι] (f : M →ₗ[R] N) (x : ιM) :
                            ((isUnique R M N ι).symm f) x = f (x default)
                            def SymmetricMap.restrictScalars {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (S : Type u_1) [Semiring S] [SMul S R] [Module S M] [Module S N] [IsScalarTower S R M] [IsScalarTower S R N] (f : M [Σ^ι]→ₗ[R] N) :
                            Equations
                            Instances For
                              def SymmetricMap.domDomCongr {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {ι' : Type u₁} (e : ι ι') (f : M [Σ^ι]→ₗ[R] N) :
                              Equations
                              Instances For
                                @[simp]
                                theorem SymmetricMap.domDomCongr_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {ι' : Type u₁} (e : ι ι') (f : M [Σ^ι]→ₗ[R] N) (v : ι'M) :
                                (domDomCongr e f) v = f fun (i : ι) => v (e i)
                                theorem SymmetricMap.domDomCongr_trans {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {ι' : Type u₁} {ι'' : Type u₂} (e₁ : ι ι') (e₂ : ι' ι'') (f : M [Σ^ι]→ₗ[R] N) :
                                domDomCongr (e₁.trans e₂) f = domDomCongr e₂ (domDomCongr e₁ f)
                                @[simp]
                                theorem SymmetricMap.domDomCongr_refl {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} (f : M [Σ^ι]→ₗ[R] N) :
                                def SymmetricMap.domDomCongrLinearEquiv (R : Type u) [Semiring R] (M : Type v) [AddCommMonoid M] [Module R M] (N : Type w) [AddCommMonoid N] [Module R N] {ι : Type u'} {ι' : Type u₁} (S : Type u_1) [Semiring S] [Module S N] [SMulCommClass R S N] (e : ι ι') :
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem SymmetricMap.domDomCongrLinearEquiv_apply {R : Type u} [Semiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} {ι' : Type u₁} (S : Type u_1) [Semiring S] [Module S N] [SMulCommClass R S N] (e : ι ι') (f : M [Σ^ι]→ₗ[R] N) (v : ι'M) :
                                  ((domDomCongrLinearEquiv R M N S e) f) v = f fun (i : ι) => v (e i)
                                  theorem map_smul_univ {R : Type u} [CommSemiring R] {M : Type v} [AddCommMonoid M] [Module R M] {N : Type w} [AddCommMonoid N] [Module R N] {ι : Type u'} [Fintype ι] (f : M [Σ^ι]→ₗ[R] N) (c : ιR) (v : ιM) :
                                  (f fun (i : ι) => c i v i) = (∏ i : ι, c i) f v
                                  def mkPiAlgebra (R : Type u) [CommSemiring R] (ι : Type u') (A : Type w') [CommSemiring A] [Algebra R A] [Fintype ι] :
                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem mkPiAlgebra_apply (R : Type u) [CommSemiring R] (ι : Type u') (A : Type w') [CommSemiring A] [Algebra R A] [Fintype ι] (v : ιA) :
                                    (mkPiAlgebra R ι A) v = i : ι, v i