Symmetric Multilinear Maps #
In this file we define symmetric multilinear maps bewteen modules as a module itself.
Main definitions #
SymmetricMap R M N ι
: the symmetricR
-multilinear maps fromι → M
toN
.
structure
SymmetricMap
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
(ι : Type u')
extends MultilinearMap R (fun (x : ι) => M) N :
Type (max (max u' v) w)
An symmetric map from ι → M
to N
, denoted M [Σ^ι]→ₗ[R] N
,
is a multilinear map that stays the same when its arguments are permuted.
- toFun : (ι → M) → N
- map_update_add' [DecidableEq ι] (m : ι → M) (i : ι) (x y : M) : (↑self).toFun (Function.update m i (x + y)) = (↑self).toFun (Function.update m i x) + (↑self).toFun (Function.update m i y)
- map_update_smul' [DecidableEq ι] (m : ι → M) (i : ι) (c : R) (x : M) : (↑self).toFun (Function.update m i (c • x)) = c • (↑self).toFun (Function.update m i x)
- map_perm_apply' (v : ι → M) (e : Equiv.Perm ι) : ((↑self).toFun fun (i : ι) => v (e i)) = (↑self).toFun v
The map is symmetric: if the arguments of
v
are permuted, the result does not change.
Instances For
An symmetric map from ι → M
to N
, denoted M [Σ^ι]→ₗ[R] N
,
is a multilinear map that stays the same when its arguments are permuted.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
SymmetricMap.instFunLikeForall
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
@[simp]
theorem
SymmetricMap.map_update_add
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
[DecidableEq ι]
(g : ι → M)
(c : ι)
(x y : M)
:
@[simp]
theorem
SymmetricMap.map_update_smul
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
[DecidableEq ι]
(g : ι → M)
(c : ι)
(r : R)
(x : M)
:
@[simp]
theorem
SymmetricMap.map_update_zero
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
[DecidableEq ι]
(g : ι → M)
(c : ι)
:
theorem
SymmetricMap.coe_injective
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
instance
SymmetricMap.instCoeMultilinearMap
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
Coe (M [Σ^ι]→ₗ[R] N) (MultilinearMap R (fun (x : ι) => M) N)
theorem
SymmetricMap.toMultilinearMap_injective
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
@[simp]
theorem
SymmetricMap.coe_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
:
@[simp]
theorem
SymmetricMap.coe_mk
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : MultilinearMap R (fun (x : ι) => M) N)
(h : ∀ (v : ι → M) (e : Equiv.Perm ι), (f.toFun fun (i : ι) => v (e i)) = f.toFun v)
:
@[simp]
theorem
SymmetricMap.map_perm_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
(e : Equiv.Perm ι)
(x : ι → M)
:
@[simp]
theorem
SymmetricMap.comp_domDomCongr
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
(e : Equiv.Perm ι)
:
def
SymmetricMap.mk'
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : MultilinearMap R (fun (x : ι) => M) N)
(h : ∀ (e : ι ≃ ι), MultilinearMap.domDomCongr e f = f)
:
Equations
- SymmetricMap.mk' f h = { toMultilinearMap := f, map_perm_apply' := ⋯ }
Instances For
instance
SymmetricMap.instAdd
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
@[simp]
theorem
SymmetricMap.zero_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
theorem
SymmetricMap.coe_zero
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
@[simp]
theorem
SymmetricMap.mk_zero
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(h : ∀ (v : ι → M) (e : Equiv.Perm ι), (MultilinearMap.toFun 0 fun (i : ι) => v (e i)) = MultilinearMap.toFun 0 v)
:
instance
SymmetricMap.instSMul
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
:
@[simp]
theorem
SymmetricMap.smul_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
(c : S)
:
theorem
SymmetricMap.coe_smul
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
(c : S)
:
theorem
SymmetricMap.coeFn_smul
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
(c : S)
(f : M [Σ^ι]→ₗ[R] N)
:
instance
SymmetricMap.instSMulCommClass
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
{T : Type u_2}
[Monoid T]
[DistribMulAction T N]
[SMulCommClass R T N]
[SMulCommClass S T N]
:
SMulCommClass S T (M [Σ^ι]→ₗ[R] N)
instance
SymmetricMap.instIsCentralScalar
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
[DistribMulAction Sᵐᵒᵖ N]
[IsCentralScalar S N]
:
IsCentralScalar S (M [Σ^ι]→ₗ[R] N)
instance
SymmetricMap.instAddCommMonoid
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
:
AddCommMonoid (M [Σ^ι]→ₗ[R] N)
Equations
- One or more equations did not get rendered due to their size.
instance
SymmetricMap.instDistribMulAction
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Monoid S]
[DistribMulAction S N]
[SMulCommClass R S N]
:
DistribMulAction S (M [Σ^ι]→ₗ[R] N)
Equations
- SymmetricMap.instDistribMulAction = { toSMul := SymmetricMap.instSMul, one_smul := ⋯, mul_smul := ⋯, smul_zero := ⋯, smul_add := ⋯ }
instance
SymmetricMap.instModule
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Semiring S]
[Module S N]
[SMulCommClass R S N]
:
The space of multilinear maps over an algebra over R
is a module over R
, for the pointwise
addition and scalar multiplication.
Equations
- SymmetricMap.instModule = { toDistribMulAction := SymmetricMap.instDistribMulAction, add_smul := ⋯, zero_smul := ⋯ }
instance
SymmetricMap.instNoZeroSMulDivisors
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Semiring S]
[Module S N]
[SMulCommClass R S N]
[NoZeroSMulDivisors S N]
:
NoZeroSMulDivisors S (M [Σ^ι]→ₗ[R] N)
def
SymmetricMap.toMultilinearMapLM
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Semiring S]
[Module S N]
[SMulCommClass R S N]
:
Embedding of symmetric maps into multilinear maps as a linear map.
Equations
- SymmetricMap.toMultilinearMapLM = { toFun := SymmetricMap.toMultilinearMap, map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
SymmetricMap.toMultilinearMapLM_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{S : Type u_1}
[Semiring S]
[Module S N]
[SMulCommClass R S N]
(self : M [Σ^ι]→ₗ[R] N)
:
def
SymmetricMap.compLinearMap
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N [Σ^ι]→ₗ[R] P)
(g : M →ₗ[R] N)
:
Equations
- f.compLinearMap g = { toMultilinearMap := (↑f).compLinearMap fun (x : ι) => g, map_perm_apply' := ⋯ }
Instances For
@[simp]
theorem
SymmetricMap.compLinearMap_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N [Σ^ι]→ₗ[R] P)
(g : M →ₗ[R] N)
:
theorem
SymmetricMap.compLinearMap_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N [Σ^ι]→ₗ[R] P)
(g : M →ₗ[R] N)
(x : ι → M)
:
def
SymmetricMap.compLinearMapAddHom
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
(P : Type w')
[AddCommMonoid P]
[Module R P]
(ι : Type u')
(f : M →ₗ[R] N)
:
Equations
- SymmetricMap.compLinearMapAddHom P ι f = { toFun := fun (g : N [Σ^ι]→ₗ[R] P) => g.compLinearMap f, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
SymmetricMap.compLinearMapAddHom_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : M →ₗ[R] N)
:
theorem
SymmetricMap.compLinearMapAddHom_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : M →ₗ[R] N)
(g : N [Σ^ι]→ₗ[R] P)
:
theorem
SymmetricMap.compLinearMap_add
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f₁ f₂ : N [Σ^ι]→ₗ[R] P)
(g : M →ₗ[R] N)
:
def
SymmetricMap.compLinearMapₗ
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
(P : Type w')
[AddCommMonoid P]
[Module R P]
(ι : Type u')
(S : Type u_1)
[Semiring S]
[Module S P]
[SMulCommClass R S P]
(f : M →ₗ[R] N)
:
Equations
- SymmetricMap.compLinearMapₗ P ι S f = { toFun := (↑(SymmetricMap.compLinearMapAddHom P ι f)).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
SymmetricMap.compLinearMapₗ_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(S : Type u_1)
[Semiring S]
[Module S P]
[SMulCommClass R S P]
[Module R S]
(f : M →ₗ[R] N)
:
theorem
SymmetricMap.compLinearMapₗ_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(S : Type u_1)
[Semiring S]
[Module S P]
[SMulCommClass R S P]
[Module R S]
(f : M →ₗ[R] N)
(g : N [Σ^ι]→ₗ[R] P)
:
def
LinearMap.compSymmetricMap
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N →ₗ[R] P)
(g : M [Σ^ι]→ₗ[R] N)
:
Equations
- f.compSymmetricMap g = { toMultilinearMap := f.compMultilinearMap ↑g, map_perm_apply' := ⋯ }
Instances For
@[simp]
theorem
LinearMap.compSymmetricMap_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N →ₗ[R] P)
(g : M [Σ^ι]→ₗ[R] N)
:
theorem
LinearMap.compSymmetricMap_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N →ₗ[R] P)
(g : M [Σ^ι]→ₗ[R] N)
(x : ι → M)
:
def
LinearMap.compSymmetricMapAddHom
{R : Type u}
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
(ι : Type u')
(f : N →ₗ[R] P)
:
Equations
- LinearMap.compSymmetricMapAddHom M ι f = { toFun := f.compSymmetricMap, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
LinearMap.compSymmetricMapAddHom_coe
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(f : N →ₗ[R] P)
:
def
LinearMap.compSymmetricMapₗ
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{P : Type w'}
[AddCommMonoid P]
[Module R P]
{ι : Type u'}
(S : Type u_1)
[Semiring S]
[Module S N]
[SMulCommClass R S N]
[Module S P]
[SMulCommClass R S P]
[CompatibleSMul N P S R]
(f : N →ₗ[R] P)
:
Equations
- LinearMap.compSymmetricMapₗ S f = { toFun := (↑(LinearMap.compSymmetricMapAddHom M ι f)).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
SymmetricMap.ofIsEmpty_symm_apply_apply
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
(ι : Type u')
[IsEmpty ι]
(n : N)
(x✝ : ι → M)
:
@[simp]
theorem
SymmetricMap.ofIsEmpty_apply
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
(ι : Type u')
[IsEmpty ι]
(f : M [Σ^ι]→ₗ[R] N)
:
def
SymmetricMap.ofSubsingleton
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
[Subsingleton ι]
(i : ι)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SymmetricMap.ofSubsingleton_apply_apply
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
[Subsingleton ι]
(i : ι)
(f : M [Σ^ι]→ₗ[R] N)
(m : M)
:
@[simp]
theorem
SymmetricMap.ofSubsingleton_symm_apply_apply
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
[Subsingleton ι]
(i : ι)
(f : M →ₗ[R] N)
(x : ι → M)
:
def
SymmetricMap.isUnique
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
(ι : Type u')
[Unique ι]
:
Equations
- SymmetricMap.isUnique R M N ι = SymmetricMap.ofSubsingleton R M N default
Instances For
@[simp]
theorem
SymmetricMap.isUnique_apply_apply
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
(ι : Type u')
[Unique ι]
(f : M [Σ^ι]→ₗ[R] N)
(m : M)
:
def
SymmetricMap.restrictScalars
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(S : Type u_1)
[Semiring S]
[SMul S R]
[Module S M]
[Module S N]
[IsScalarTower S R M]
[IsScalarTower S R N]
(f : M [Σ^ι]→ₗ[R] N)
:
Equations
- SymmetricMap.restrictScalars S f = { toMultilinearMap := MultilinearMap.restrictScalars S ↑f, map_perm_apply' := ⋯ }
Instances For
def
SymmetricMap.domDomCongr
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{ι' : Type u₁}
(e : ι ≃ ι')
(f : M [Σ^ι]→ₗ[R] N)
:
Equations
- SymmetricMap.domDomCongr e f = { toMultilinearMap := MultilinearMap.domDomCongr e ↑f, map_perm_apply' := ⋯ }
Instances For
@[simp]
theorem
SymmetricMap.domDomCongr_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{ι' : Type u₁}
(e : ι ≃ ι')
(f : M [Σ^ι]→ₗ[R] N)
(v : ι' → M)
:
@[simp]
theorem
SymmetricMap.domDomCongr_refl
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
(f : M [Σ^ι]→ₗ[R] N)
:
def
SymmetricMap.domDomCongrLinearEquiv
(R : Type u)
[Semiring R]
(M : Type v)
[AddCommMonoid M]
[Module R M]
(N : Type w)
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{ι' : Type u₁}
(S : Type u_1)
[Semiring S]
[Module S N]
[SMulCommClass R S N]
(e : ι ≃ ι')
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SymmetricMap.domDomCongrLinearEquiv_apply
{R : Type u}
[Semiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
{ι' : Type u₁}
(S : Type u_1)
[Semiring S]
[Module S N]
[SMulCommClass R S N]
(e : ι ≃ ι')
(f : M [Σ^ι]→ₗ[R] N)
(v : ι' → M)
:
theorem
map_smul_univ
{R : Type u}
[CommSemiring R]
{M : Type v}
[AddCommMonoid M]
[Module R M]
{N : Type w}
[AddCommMonoid N]
[Module R N]
{ι : Type u'}
[Fintype ι]
(f : M [Σ^ι]→ₗ[R] N)
(c : ι → R)
(v : ι → M)
:
def
mkPiAlgebra
(R : Type u)
[CommSemiring R]
(ι : Type u')
(A : Type w')
[CommSemiring A]
[Algebra R A]
[Fintype ι]
:
Equations
- mkPiAlgebra R ι A = { toMultilinearMap := MultilinearMap.mkPiAlgebra R ι A, map_perm_apply' := ⋯ }
Instances For
@[simp]
theorem
mkPiAlgebra_apply
(R : Type u)
[CommSemiring R]
(ι : Type u')
(A : Type w')
[CommSemiring A]
[Algebra R A]
[Fintype ι]
(v : ι → A)
: