Documentation

EllipticCurve.Ring.Model

Models of Elliptic Curves over a Ring #

We define elliptic curves over a ring from the Weierstrass equation. Note that not all "elliptic curves" in the literature necessarily satisfy a Weierstrass cubic globally.

Main definitions #

def EllipticCurve.Ring.X {R : CommRingCat} :
SymmetricPower (↑R) (Fin 3R) 1

The "x-coordinate" as a section of 𝒪(1) on ℙ².

Equations
Instances For
    def EllipticCurve.Ring.Y {R : CommRingCat} :
    SymmetricPower (↑R) (Fin 3R) 1
    Equations
    Instances For
      def EllipticCurve.Ring.Z {R : CommRingCat} :
      SymmetricPower (↑R) (Fin 3R) 1
      Equations
      Instances For
        @[simp]
        theorem EllipticCurve.Ring.map_X {R : CommRingCat} {M : Type u_1} [AddCommGroup M] [Module (↑R) M] (f : (Fin 3R) →ₗ[R] M) :
        @[simp]
        theorem EllipticCurve.Ring.map_Y {R : CommRingCat} {M : Type u_1} [AddCommGroup M] [Module (↑R) M] (f : (Fin 3R) →ₗ[R] M) :
        @[simp]
        theorem EllipticCurve.Ring.map_Z {R : CommRingCat} {M : Type u_1} [AddCommGroup M] [Module (↑R) M] (f : (Fin 3R) →ₗ[R] M) :
        def WeierstrassCurve.Affine.asSym {R : CommRingCat} (W : Affine R) :
        SymmetricPower (↑R) (Fin 3R) 3
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          We don't have the scheme yet, so we just use the functor R-Alg ⥤ Type.

          Equations
          Instances For