Centers of magmas and semigroups #
Main definitions #
Set.center
: the center of a magmaSet.addCenter
: the center of an additive magmaSet.centralizer
: the centralizer of a subset of a magmaSet.addCentralizer
: the centralizer of a subset of an additive magma
See also #
See Mathlib/GroupTheory/Subsemigroup/Center.lean
for the definition of the center as a
subsemigroup:
Subsemigroup.center
: the center of a semigroupAddSubsemigroup.center
: the center of an additive semigroup
We provide Submonoid.center
, AddSubmonoid.center
, Subgroup.center
, AddSubgroup.center
,
Subsemiring.center
, and Subring.center
in other files.
See Mathlib/GroupTheory/Subsemigroup/Centralizer.lean
for the definition of the centralizer
as a subsemigroup:
Subsemigroup.centralizer
: the centralizer of a subset of a semigroupAddSubsemigroup.centralizer
: the centralizer of a subset of an additive semigroup
We provide Monoid.centralizer
, AddMonoid.centralizer
, Subgroup.centralizer
, and
AddSubgroup.centralizer
in other files.
Conditions for an element to be additively central
- comm (a : M) : AddCommute z a
addition commutes
associative property for left addition
associative property for right addition
Instances For
Conditions for an element to be multiplicatively central
- comm (a : M) : Commute z a
multiplication commutes
associative property for left multiplication
associative property for right multiplication
Instances For
Center #
Equations
- Set.decidableMemCentralizer x✝ = decidable_of_iff' (∀ m ∈ S, m * x✝ = x✝ * m) ⋯
Equations
- Set.decidableMemAddCentralizer x✝ = decidable_of_iff' (∀ m ∈ S, m + x✝ = x✝ + m) ⋯
Equations
- Set.decidableMemCenter x✝ = decidable_of_iff' (∀ (g : M), g * x✝ = x✝ * g) ⋯
Equations
- Set.decidableMemAddCenter x✝ = decidable_of_iff' (∀ (g : M), g + x✝ = x✝ + g) ⋯