Base Change for Symmetric Multilinear Maps #
In this file we contruct the base change for symmetric multilinear maps.
Main definitions #
SymmetricMap.baseChange
: the base change of a symmetric multilinear mapM [Σ^ι]→ₗ[R] N
to(A ⊗[R] M) [Σ^ι]→ₗ[A] (A ⊗[R] N)
.
Restrict a multilinear map on Fin (n + 1)
to a multilinear map on Fin n
along a chosen
p : M₁ (Fin.last n)
.
Equations
- f.restrictFin p = { toFun := fun (v : (i : Fin n) → M₁ i.castSucc) => f fun (i : Fin (n + 1)) => Fin.lastCases p v i, map_update_add' := ⋯, map_update_smul' := ⋯ }
Instances For
restrictFin
as linear map.
Equations
- f.restrictFinₗ = { toFun := fun (p : M₁ (Fin.last n)) => f.restrictFin p, map_add' := ⋯, map_smul' := ⋯ }
Instances For
restrictFin
as a bilinear map.
Equations
- MultilinearMap.restrictFinₗₗ = { toFun := fun (f : MultilinearMap R M₁ N) => f.restrictFinₗ, map_add' := ⋯, map_smul' := ⋯ }
Instances For
The induction step.
Equations
- MultilinearMap.baseChangeFinAux ih f v = { toFun := fun (p : M₁ (Fin.last n)) => (ih ((MultilinearMap.restrictFinₗₗ f) p)) v, map_add' := ⋯, map_smul' := ⋯ }
Instances For
The induction step as a multilinear map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The induction step as a linear map to multilinear maps.
Equations
- MultilinearMap.baseChangeFinAuxMultilinearₗ ih = { toFun := fun (f : MultilinearMap R M₁ N) => MultilinearMap.baseChangeFinAuxMultilinear ih f, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Base change for multilinear maps with a finite indexing type. Here we use Fin n
as a special
case so that we can define the map inductively.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Base change for multilinear maps with a (finite) indexing type, with a chosen equiv ι ≃ Fin n
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
baseChangeOfEquiv
is actually independent of the Equiv
chosen.
Base change for multilinear maps indexed by a finite type, given by a term of
Trunc (ι ≃ Fin n)
.
Equations
- MultilinearMap.baseChangeOfTrunc R M₁ N A e = Trunc.lift (MultilinearMap.baseChangeOfEquiv R M₁ N A) ⋯ e
Instances For
Base change for multilinear maps indexed by a finite type.
Equations
- MultilinearMap.baseChange R M₁ N A = MultilinearMap.baseChangeOfTrunc R M₁ N A (Trunc.mk (Finite.equivFin ι'))
Instances For
Base change for symmetric maps with a finite indexing type.
Equations
- SymmetricMap.baseChange R M N ι A = { toFun := fun (f : M [Σ^ι]→ₗ[R] N) => SymmetricMap.mk' ((MultilinearMap.baseChange R (fun (x : ι) => M) N A) ↑f) ⋯, map_add' := ⋯, map_smul' := ⋯ }